Traceback (most recent call last): File "setup.py", line 52, in <module> extra_compile_args=extra_compile_args) File "~/.conda/envs/dl/lib/python2.7/site-packages/torch/utils/ffi/__init__.py", line 162, in create_extension ffi.cdef(_typedefs + all_headers_source) File "~/.conda/envs/dl/lib/python2.7/site-packages/cffi/api.py", line 107, in cdef self._cdef(csource, override=override, packed=packed) File "~/.conda/envs/dl/lib/python2.7/site-packages/cffi/api.py", line 121, in _cdef self._parser.parse(csource, override=override, **options) File "~/.conda/envs/dl/lib/python2.7/site-packages/cffi/cparser.py", line 315, in parse self._internal_parse(csource) File "~/.conda/envs/dl/lib/python2.7/site-packages/cffi/cparser.py", line 320, in _internal_parse ast, macros, csource = self._parse(csource) File "~/.conda/envs/dl/lib/python2.7/site-packages/cffi/cparser.py", line 278, in _parse self.convert_pycparser_error(e, csource) File "~/.conda/envs/dl/lib/python2.7/site-packages/cffi/cparser.py", line 307, in convert_pycparser_error raise CDefError(msg) cffi.error.CDefError: cannot parse "int cpu_ctc(THFloatTensor *probs," <cdef source string>:29:34: Illegal character '\r'
Traceback (most recent call last): File "main.py", line 222, in <module> main() File "main.py", line 203, in main avg_loss, avg_acc = train(model, ctc, optimizer, train_dataset_loader, label_map, train_total_batches) File "main.py", line 41, in train loss = ctc.loss(predict_Ys, preds_size, batch_merge_Labels, batch_label_lens) File "~/workspace/ocr/model.py", line 109, in loss rs = self.criterion(preds, label, preds_length, label_length) / batch_size File "~/.conda/envs/dl/lib/python2.7/site-packages/torch/nn/modules/module.py", line 357, in __call__ result = self.forward(*input, **kwargs) File "build/bdist.linux-x86_64/egg/warpctc_pytorch/__init__.py", line 76, in forward File "build/bdist.linux-x86_64/egg/warpctc_pytorch/__init__.py", line 17, in forward __version__ = PILLOW_VERSION AttributeError: 'module'object has no attribute 'gpu_ctc'
* acts: Tensor of (seqLength x batch x outputDim) containing output from network * labels: 1 dimensional Tensor containing all the targets of the batch in one sequence * act_lens: Tensor of size (batch) containing size of each output sequence from the network * label_lens: Tensor of (batch) containing label length of each example