1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
| import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import sru import time import os import sys import numpy as np
class Tools(object): @staticmethod def currect_time(): return time.strftime("%H:%M:%S", time.localtime()) + '.%03d' % (time.time() % 1 * 1000)
@staticmethod def log_print(content): print("[" + Tools.currect_time() + "] " + content)
class Setting(object): @staticmethod def checkpoint_dir(): return "model"
class Network(object): def __init__(self): self.num_input = 28 self.timesteps = 28 self.num_hidden = 128 self.num_classes = 10 self.lstm_layers = 2 self.using_sru = sys.argv[1] == "SRU" print("Using SRU" if self.using_sru else "Using LSTM")
self.X = tf.placeholder("float", [None, self.timesteps, self.num_input]) self.Y = tf.placeholder("float", [None, self.num_classes])
weights = { 'out': tf.Variable(tf.random_normal([self.num_hidden, self.num_classes])) } biases = { 'out': tf.Variable(tf.random_normal([self.num_classes])) }
x = tf.unstack(self.X, self.timesteps, 1)
if self.using_sru: rnn_cell = lambda: sru.SRUCell(self.num_hidden, False) else: rnn_cell = lambda: tf.nn.rnn_cell.LSTMCell(self.num_hidden, forget_bias=1.0)
cell_stack = tf.nn.rnn_cell.MultiRNNCell([rnn_cell() for _ in range(self.lstm_layers)], state_is_tuple=True)
outputs, _ = tf.nn.static_rnn(cell_stack, x, dtype=tf.float32)
self.logits = tf.matmul(outputs[-1], weights['out']) + biases['out']
self.prediction = tf.nn.softmax(self.logits) def get_input_ops(self): return self.X, self.Y
def get_input_shape(self): return self.timesteps, self.num_input
def get_output_ops(self): return self.logits, self.prediction
def save_model(saver, sess, model_path): Tools.log_print('save model to {0}.'.format(model_path)) saver.save(sess, model_path)
def load_model(saver, sess, model_path): Tools.log_print('try to load model from {0}.'.format(model_path)) saver.restore(sess, model_path) Tools.log_print('load model success') return True
def train(): mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
model_dir = 'model' model_path = os.path.join(model_dir, 'mnist_nn')
network = Network() X, Y = network.get_input_ops() timesteps, num_input = network.get_input_shape() logits, prediction = network.get_output_ops()
learning_rate = 1e-2 display_step = 100 train_epochs = 3 train_batchsize = 128 test_batchsize = 128
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( logits= logits, labels=Y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) grads = optimizer.compute_gradients(loss_op) max_grad_norm = 1.0 tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(loss_op, tvars), max_grad_norm) train_op = optimizer.apply_gradients(zip(grads, tvars))
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
saver = tf.train.Saver(tf.global_variables()) if not os.path.exists(model_dir): os.makedirs(model_dir)
for epoch in range(1, train_epochs+1): train_steps = len(mnist.train.labels) / train_batchsize for step in range(1, train_steps+1): batch_x, batch_y = mnist.train.next_batch(train_batchsize) batch_x = batch_x.reshape((train_batchsize, timesteps, num_input)) sess.run(train_op, feed_dict={X: batch_x, Y: batch_y}) if step % display_step == 0 or step == 1: loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x, Y: batch_y}) Tools.log_print("Epoch[%d/%d] Step[%d/%d] Train Minibatch Loss= %.4f, Training Accuracy= %.4f" % (epoch, train_epochs, step, train_steps, loss, acc))
Tools.log_print("Optimization Finished!") save_model(saver, sess, model_path)
if load_model(saver, sess, model_path): test_steps = len(mnist.test.labels) / test_batchsize acc_list = [] for step in range(1, test_steps+1): batch_x, batch_y = mnist.test.next_batch(test_batchsize) batch_x = batch_x.reshape((test_batchsize, timesteps, num_input)) batch_acc = sess.run(accuracy, feed_dict={X: batch_x, Y: batch_y}) acc_list.append(batch_acc) acc = np.mean(acc_list) Tools.log_print("Testing Accuracy: {0}".format(acc))
if __name__ == '__main__': train()
|